Datasheet

L-1RS5

4G/3G/2G Ultraband Hinged Monopole Whip Antenna

CELLULAR

46

The L-1RS5 is a type of connector mount antenna, supporting 4G, 3G, and 2G cellular networks and operates within a frequency range of 698 to 2170MHz.

With its wide frequency range, the L-1RS5 antenna is compatible with various cellular networks used for voice and data communication. It can be used in applications such as wireless communication systems, IoT devices, mobile routers, and other wireless devices that require reliable cellular connectivity.

190 x 16 mm

www.miotsolutions.com info@miotsolutions.com

Document Information

Product	L-1RS5
Part Number	L-1RS5
Description	4G/3G/2G Ultraband Hinged Monopole Whip Antenna
Version	2.0 (current)
Date	7-Jul-2023
Status	Released

Revision History

Version	Date	Author	Changes
1.0	16-Dec-2020	Amy Li	Initial Release
2.0	7-Jul-2023	Ivy Liao	New layout and design

Product Overview

Product Description

The L-1RS5 is a type of connector mount antenna, supporting 4G, 3G, and 2G cellular networks and operates within a frequency range of 698 to 2170MHz.

With its wide frequency range, the L-1RS5 antenna is compatible with various cellular networks used for voice and data communication. It can be used in applications such as wireless communication systems, IoT devices, mobile routers, and other wireless devices that require reliable cellular connectivity.

Key Features

- Operates in 698-894/1710-2170
 MHz
- Linear polarization
- High gain of 2 dBi
- VSWR 1.5
- Omni-directional pattern

Applications

- 4G/LTE radios
- Gateways
- Set-Top Boxes
- Security
- Transportation
- Smart agriculture

Electrical Specifications

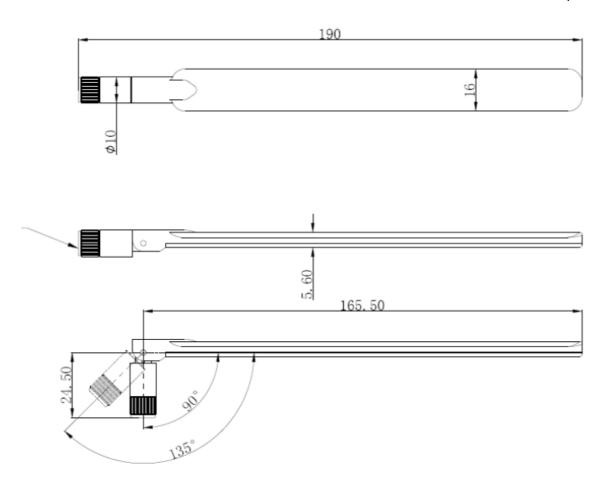
Frequency			VSWR	Peak Gain	Efficiency
LTE	698 - 894	MHz	1.9	0.9 d Bi	44%
LTE	1710 - 2170	MHz	1.6	1.4 d Bi	50%

Frequency Rang	ge 698 – 2170 MHz	Radiation	Omnidirectional
Impedance	50 Ω	Electrical Type	Monopole
Polarization	Linear		

Mechanical Specifications

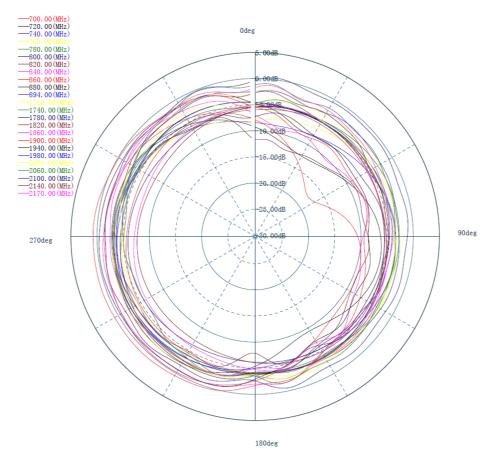
Type	Hinge	Casing	Yes
Dimensions	190 x 16 mm	Color	Black
Connector	SMA Plug (male pin)	Material	PC + ABS
(Termination)			
Mounting Type	Connector Mount	Weight	TBC (to be confirmed)

Caution:


- 1. Do not apply excess mechanical stress to the component body or terminations. Do not attempt to re-form or bend the components, as this will cause damage to the component.
- 2. Do not expose the component to an open flame.
- 3. This specification applies to the functionality of the component as a single unit. Please ensure the component is thoroughly evaluated in the application circuit.

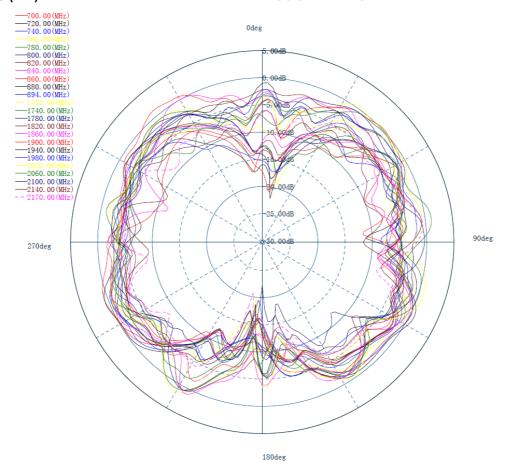
Product Image and Dimensions

Radiation Pattern

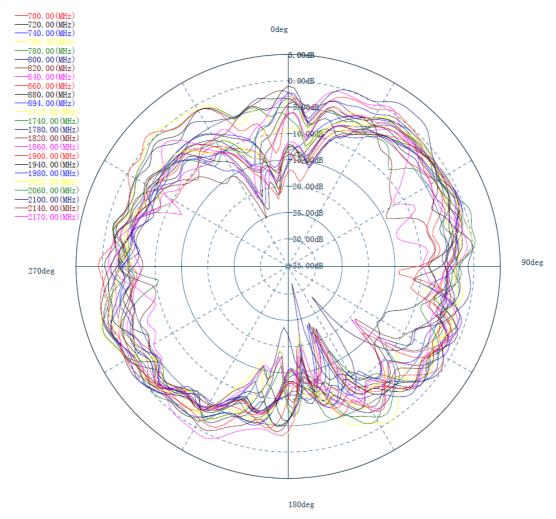

A radiation pattern is a graphical representation of the directional properties of an antenna. It shows how electromagnetic waves are distributed in space in relation to the direction of propagation.

By understanding the information provided by a radiation pattern, it is possible to optimize the design and performance of an antenna for specific applications.

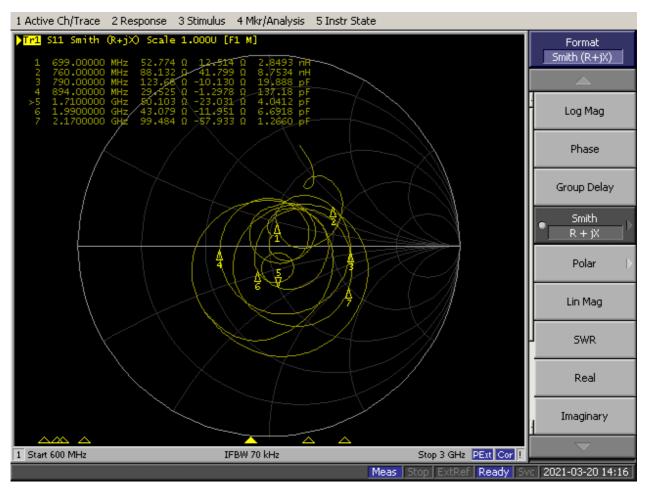
XY Plane (H)

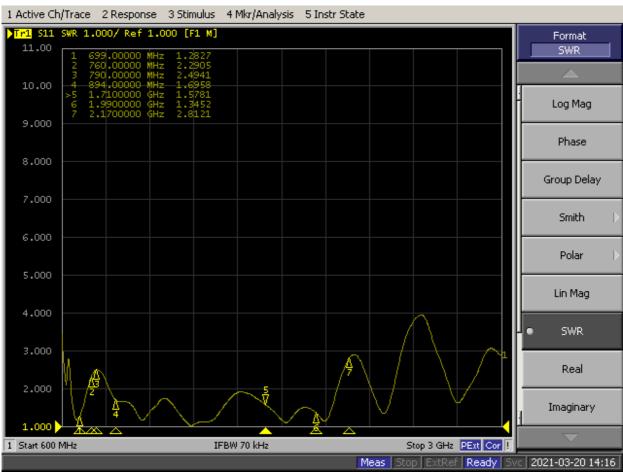

698 - 2170 MHz

YZ Plane (E1)

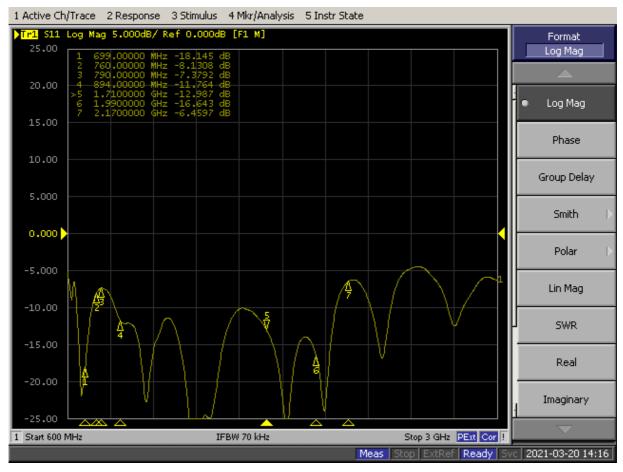

698 - 2170 MHz

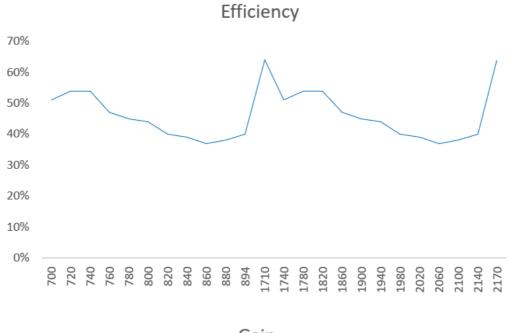
698 - 2170 MHz




Antenna Smith and VSWR

Frequer	ncy	VSWR
699	MHz	1.28
760	MHz	2.29
790	MHz	2.49
894	MHz	1.69


Frequen	су	VSWR
1710	MHz	1.57
1990	MHz	1.34
2170	MHz	2.81



Antenna Efficiency and Gain

Frequen	cy	Efficiency	Gain
700	MHz	51%	2.17
720	MHz	54%	2.18
740	MHz	54%	1.59
760	MHz	47%	2.42
780	MHz	45%	2.07
800	MHz	44%	0.97
820	MHz	40%	0.53
840	MHz	39%	-0.65
860	MHz	37%	-0.53
880	MHz	38%	-0.49
894	MHz	40%	0
1710	MHz	64%	2.31

Frequenc	У	Efficiency	Gain
1740	MHz	51%	2.17
1780	MHz	54%	2.18
1820	MHz	54%	1.59
1860	MHz	47%	2.42
1900	MHz	45%	2.07
1940	MHz	44%	0.97
1980	MHz	40%	0.53
2020	MHz	39%	-0.65
2060	MHz	37%	-0.53
2100	MHz	38%	-0.49
2140	MHz	40%	0
2170	MHz	64%	2.31

Environmental Data

Operating Temperature	-20 °C to +80 °C
Compliance	RoHS

Ordering Information

Product Variants

Part Number	Description
L-1RS5	4G/3G/2G Ultraband Hinged Monopole Whip Antenna

About MIOT

Miot Wireless Solutions, headquartered in Suzhou, China, was established in 2017. It has subsidiaries in Canada, the United States, Brazil, and EMEA. MIOT is a professional designer and manufacturer of Antennas and IoT PCBA products, providing turn-key service to customers

worldwide.

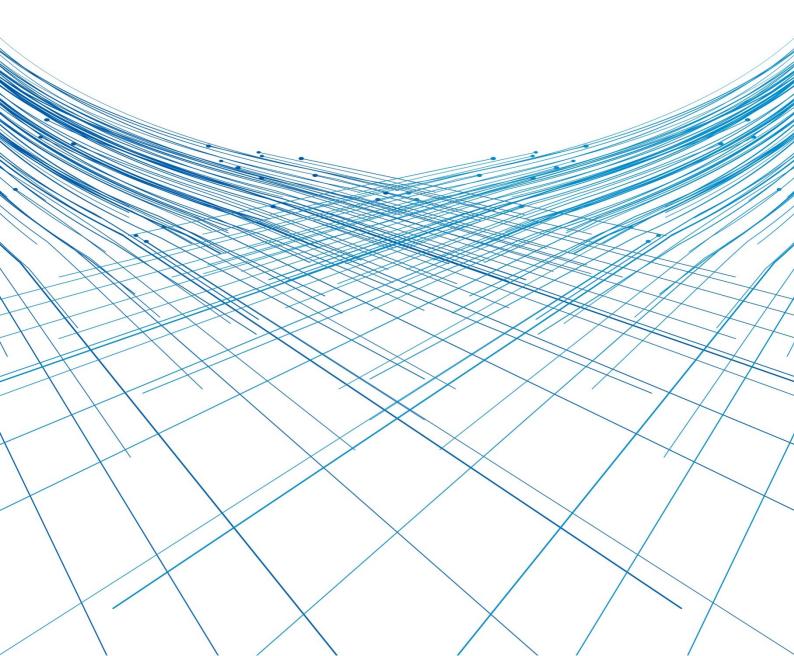
Our talented R&D team has experienced antenna, hardware, and software engineers who can participate in your new project, from something simple like antenna/selection and design, to complete turn-key services, which entails taking your concept and ideas through design, prototyping, debugging, certification, and manufacturing. Miot offers reliable products at reasonable prices with fast delivery times to help you get ahead in the market.

Contact

MIOT Wireless Solutions Co. Ltd. 120-5800 Ambler Dr, MISSISSAUGA ONTARIO L4W 4J4 Canada

Mobeito: MANA

Website: www.miotsolutions.com Email: info@miotsolutions.com


The information contained herein is provided "as is" and MOIT assumes no liability for using the information. No warranty, either express or implied, is given, including but not limited to the accuracy, correctness, reliability, and fitness for a particular purpose of the information. This document may be revised by MOIT at any time.

MIOT reserves all rights to this document and the information contained herein. Reproduction, use, modification, or disclosure to third parties of this document without express permission is strictly prohibited.

Copyright © 2023, MIOT Wireless Solutions Ltd. All Rights Reserved

