Datasheet

L-5RB1

5G Ultraband Hinged Monople Blade Antenna

CELLULAR

WIFI

The L-5RB1 is an ultraband antenna for 5G, LTE, and WCDMA that can also cover Wi-Fi frequencies. It's a compact and durable external antenna with a wide band and high efficiency.

The L-5RB1 allows the antenna to be positioned for optimum performance compared to a fixed whip design. The antenna attaches with an SMA connector.

193.5 x 37 x 10 mm

www.miotsolutions.com

info@miotsolutions.com

Document Information

Product	L-5RB1
Part Number	L-5RB1
Description	5G full band foldable rubber rod antenna
Version	2.0 (current)
Date	30-Mar-2023
Status	Released

Revision History

Version	Date	Author	Changes
1.0	16-Dec-2020	Amy Li	Initial Release
2.0	30-Mar-2023	Amy Li	New layout and design

Product Overview

Product Description

The L-5RB1 is an ultraband hinged monopole blade cellular antenna for 5G, LTE, and WCDMA that can also cover Wi-Fi frequencies. It's a compact and durable external antenna with an ultra-wide range and high efficiency. It's an ideal solution for cellular IoT applications requiring a durable and cost-effective external antenna.

The hinged swivel design allows the antenna to be positioned for optimum performance and reduces the potential for damage from impact compared to a fixed blade design. The antenna attaches with an SMA plug (male pin) connector.

Key Features

- Supports 5G / LTE / WCDMA & WIFI
- Wide Application
- High Reliability/Sensitivity
- Compact Size, Easy to install.
- RoHS Compliant

Applications

- LTE/Wi-Fi Radios
- Gateways
- Set-top Boxes.
- Security
- Transportation
- Smart Agriculture

Electrical Specifications

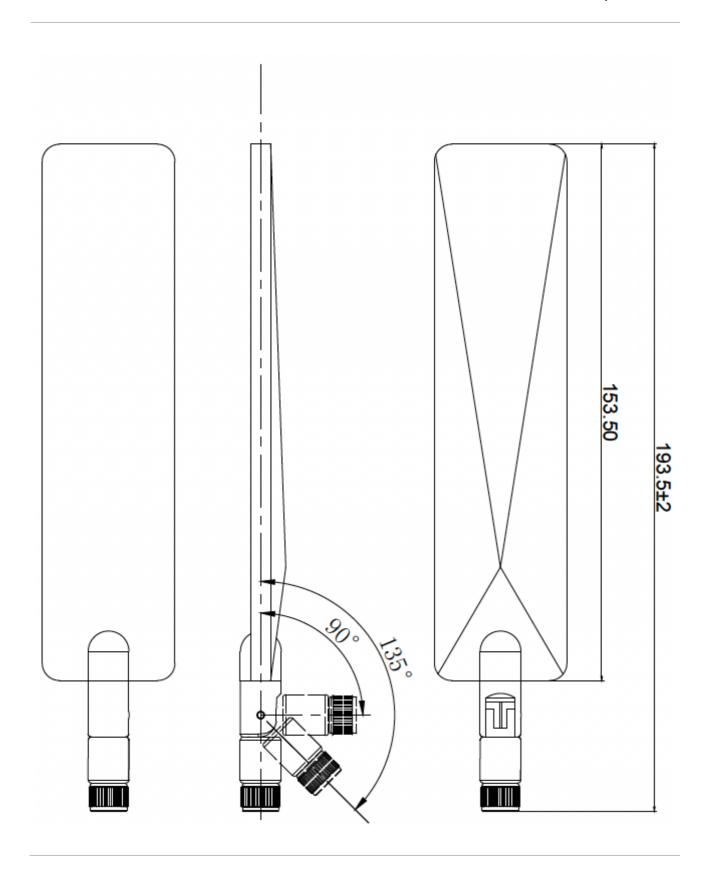
Frequency			VSWR	Peak Gain	Efficiency
5G/LTE	600 - 960	MHz	1.8	1.6 d Bi	50%
5G/LTE	1710 - 6000	MHz	1.8	5.0 d Bi	70%
2.4G WiFi	2400 2500	MHz	1.2	4.5 d Bi	80%

Frequency Range	600 – 6000 MHz	
Impedance	50 Ω	
Polarization	Vertical	

Radiation	Omnidirectional	
Electrical Type	Monopole	

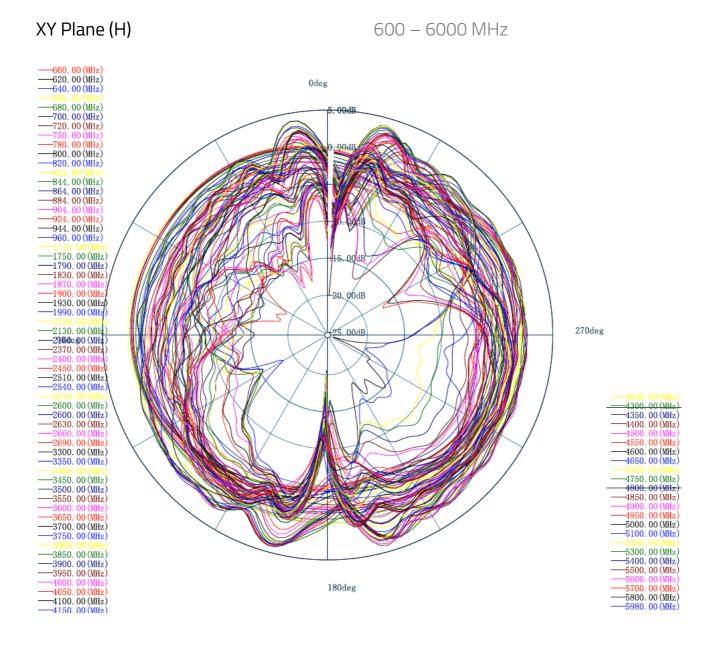
Mechanical Specifications

Туре	Hinge / Swivel Blade Type	Casing	Yes
Dimensions	193.5 x 26 x 10 mm	Color	Black
Connector	SMA Plug (male pin)	Material	PC + ABS
(Termination)			
Mounting Type	Connector Mount	Weight	TBC (to be confirmed)


Caution:

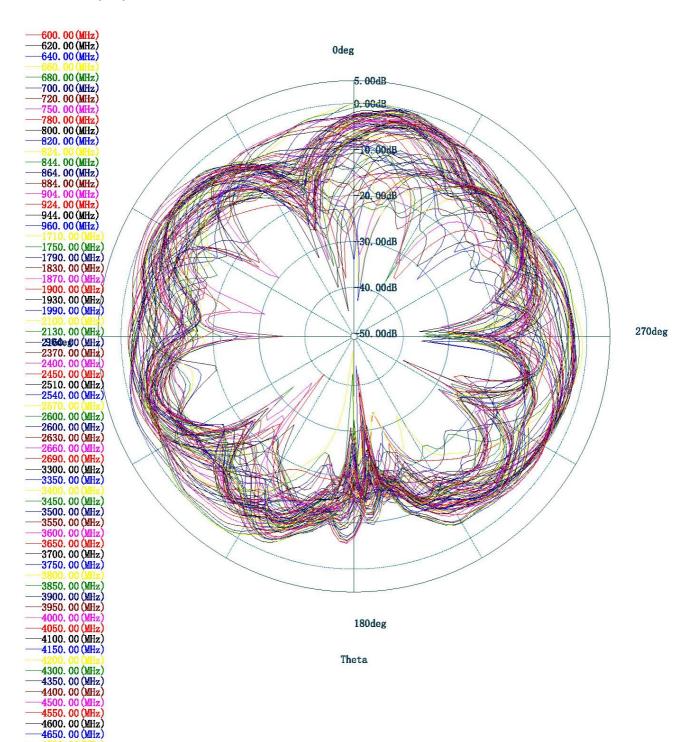
- 1. Do not apply excess mechanical stress to the component body or terminations. Do not attempt to re-form or bend the components, as this will cause damage to the component.
- 2. Do not expose the component to an open flame.
- 3. This specification applies to the functionality of the component as a single unit. Please ensure the component is thoroughly evaluated in the application circuit.

Product Image and Dimensions



Radiation Pattern

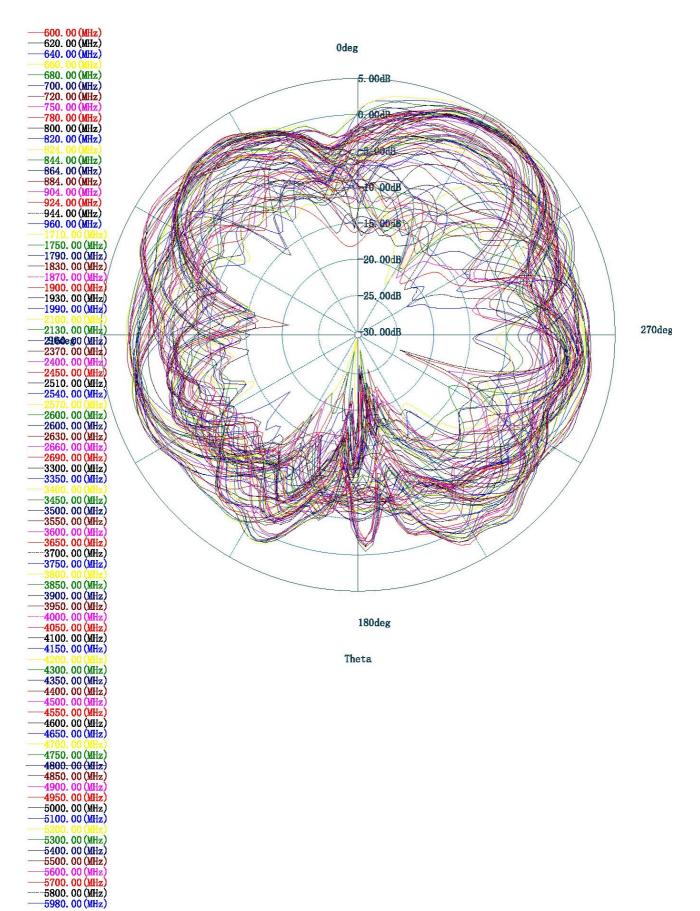
A radiation pattern is a graphical representation of the directional properties of an antenna. It shows how electromagnetic waves are distributed in space in relation to the direction of propagation.


By understanding the information provided by a radiation pattern, it is possible to optimize the design and performance of an antenna for specific applications.

YZ Plane (E1)

600 - 6000 MHz

-4750.00 (MHz) 4800.00 (MHz) -4850.00 (MHz)

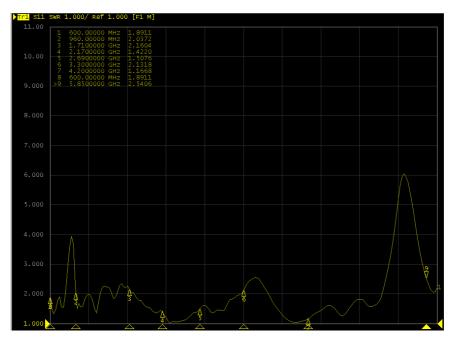

4900. 00 (MHz) 4950. 00 (MHz) 5000. 00 (MHz) 5100. 00 (MHz)

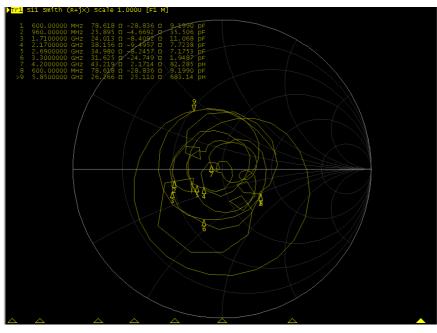
-5300, 00 (MHz) -5400, 00 (MHz) -5500, 00 (MHz)

-5700. 00 (MHz) -5800. 00 (MHz) -5980. 00 (MHz)

YZ Plane (E2)

600 - 6000 MHz





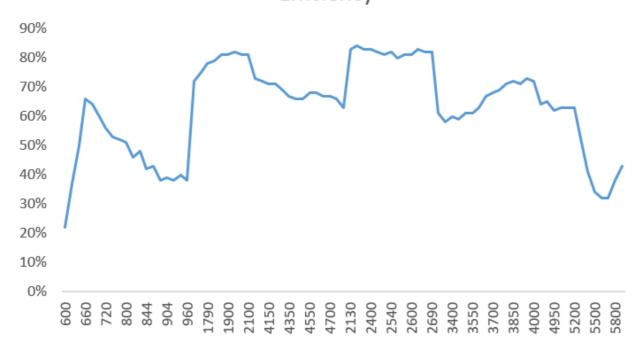
Antenna Smith and VSWR

Freque	ncy	VSWR	
600	MHz	1.89	
960	MHz	2.03	
1710	MHz	2.16	
2170	MHz	1.42	
2690	MHz	1.50	

Freque	ncy	VSWR
3300	MHz	2.13
4200	MHz	1.16
6000	MHz	1.89
5850	MHz	2.54

Antenna Efficiency and Gain

Frequer	псу	Efficiency	Gain
600	MHz	22%	-2.81185
620	MHz	37%	-1.13336
640	MHz	50%	0.380245
660	MHz	66%	1.571216
680	MHz	64%	1.460934
700	MHz	60%	1.201793
720	MHz	56%	1.692067
750	MHz	53%	1.214098
780	MHz	52%	1.336346
800	MHz	51%	1.37651
820	MHz	46%	1.143318
824	MHz	48%	1.46784
844	MHz	42%	1.584811
864	MHz	43%	1.240109
884	MHz	38%	0.748351
904	MHz	39%	1.092452
924	MHz	38%	0.949888
944	MHz	40%	1.490599
960	MHz	38%	1.444815
1710	MHz	72%	4.354856
1750	MHz	75%	4.450958
1790	MHz	78%	4.603097
1830	MHz	79%	4.307678
1870	MHz	81%	4.266425
1900	MHz	81%	4.174389
1930	MHz	82%	4.32451
1990	MHz	81%	4.254974
2100	MHz	81%	4.752332
4050	MHz	73%	5.568268


Frequenc	Ξ y	Efficiency	Gain
2130	MHz	83%	4.978934
2160	MHz	84%	4.888483
2370	MHz	83%	4.722612
2400	MHz	83%	4.828868
2450	MHz	82%	4.578252
2510	MHz	81%	4.565362
2540	MHz	82%	4.696508
2570	MHz	80%	4.407131
2600	MHz	81%	4.230364
2600	MHz	81%	4.215272
2630	MHz	83%	4.361275
2660	MHz	82%	4.337233
2690	MHz	82%	4.597091
3300	MHz	61%	4.400471
3350	MHz	58%	4.212075
3400	MHz	60%	4.217249
3450	MHz	59%	3.894526
3500	MHz	61%	3.845038
3550	MHz	61%	3.533937
3600	MHz	63%	3.556475
3650	MHz	67%	4.122467
3700	MHz	68%	4.470158
3750	MHz	69%	4.55189
3800	MHz	71%	5.282838
3850	MHz	72%	5.439901
3900	MHz	71%	5.547183
3950	MHz	73%	5.578497
4000	MHz	72%	5.534568
4850	MHz	64%	4.820444

4100	MHz	72%	5.565091
4150	MHz	71%	5.523798
4200	MHz	71%	5.360662
4300	MHz	69%	5.443983
4350	MHz	67%	5.125211
4400	MHz	66%	5.326871
4500	MHz	66%	5.180861
4550	MHz	68%	5.274385
4600	MHz	68%	5.020384
4650	MHz	67%	4.920138
4700	MHz	67%	4.742701
4750	MHz	66%	4.611537
4800	MHz	63%	5.568268

4900	MHz	65%	5.040499
4950	MHz	62%	4.876637
5000	MHz	63%	5.03679
5100	MHz	63%	5.06759
5200	MHz	63%	4.939609
5300	MHz	51%	4.028063
5400	MHz	41%	3.113334
5500	MHz	34%	2.446156
5600	MHz	32%	2.277399
5700	MHz	32%	1.833427
5800	MHz	38%	2.819965
5980	MHz	43%	3.887592

Efficiency

Environmental Data

Operating Temperature	-40 °C to +85 °C
IP Rating	IP55
Compliance	RoHS

Ordering Information

Product Variants

Part Number	Description
L-5RB1	5G full band foldable rubber rod antenna

About MIOT

Miot Wireless Solutions, headquartered in Suzhou, China, was established in 2017. It has subsidiaries in Canada, the United States, Brazil, and EMEA. MIOT is a professional designer and

manufacturer of Antennas and IoT PCBA products, providing turn-key service to customers

worldwide.

Our talented R&D team has experienced antenna, hardware, and software engineers who can

participate in your new project, from something simple like antenna/selection and design, to

complete turn-key services, which entails taking your concept and ideas through design,

prototyping, debugging, certification, and manufacturing. Miot offers reliable products at

reasonable prices with fast delivery times to help you get ahead in the market.

Contact

MIOT Wireless Solutions Co. Ltd.

120-5800 Ambler Dr, MISSISSAUGA

ONTARIO I 4W 4I4

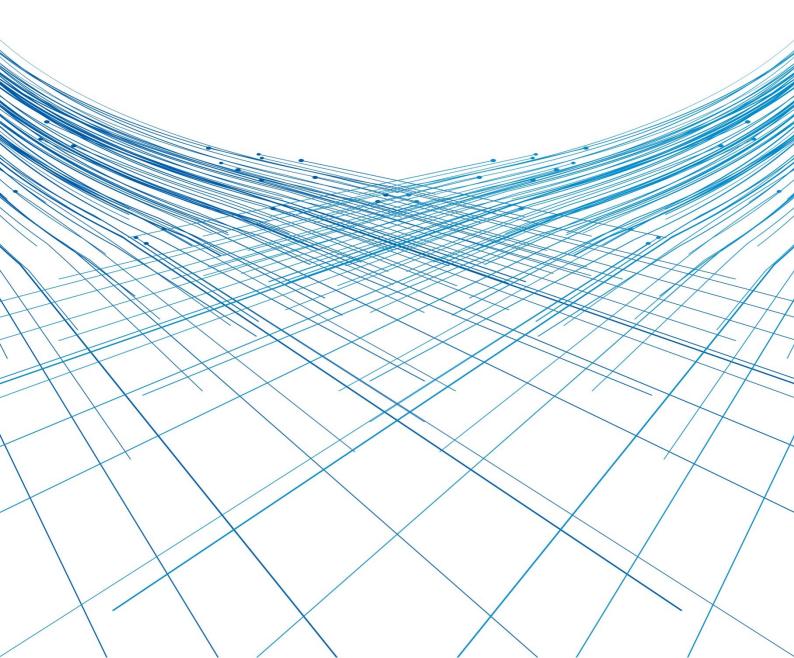
Canada

Website: www.miotsolutions.com

Email: info@miotsolutions.com

The information contained herein is provided "as is" and MOIT assumes no liability for using the information. No warranty, either express or implied, is given, including but not limited to the accuracy, correctness, reliability, and fitness

for a particular purpose of the information. This document may be revised by MOIT at any time.


MIOT reserves all rights to this document and the information contained herein. Reproduction, use, modification, or

disclosure to third parties of this document without express permission is strictly prohibited.

Copyright © 2023, MIOT Wireless Solutions Ltd. All Rights Reserved

Miot

