Datasheet

L-1RC4

4G Magnetic Suction Antenna

CELLULAR

WIFI

L-1RC4 is a high-performance 4G magnetic suction antenna produced by MIOT Company, supporting frequencies of 690-960MHz and 1710-2700MHz. This antenna is designed with advanced technology, delivering outstanding signal reception and transmission capabilities suitable for applications in IoT, mobile communications, and other related fields. Its magnetic suction design allows for easy and quick installation on metal surfaces, ensuring a stable and reliable connection experience for users.

With its wide frequency range and high-performance capabilities, the L-1RC4 antenna supports reliable wireless connectivity across multiple cellular networks. It enables efficient data transfer, voice communication, and IoT applications.

233 × 16 mm

Document Information

Product	L-1RC4
Part Number	L-1RC4
Description	4G Magnetic Suction Antenna
Version	1.0 (current)
Date	3-Jan-2024
Status	Released

Revision History

Version	Date	Author	Changes
1.0	3-Jan-2024	lvy liao	Initial Release

Product Overview

Product Description

L-1RC4 is a high-performance 4G magnetic suction antenna produced by MIOT Company, supporting frequencies of 690-960MHz and 1710-2700MHz. This antenna is designed with advanced technology, delivering outstanding signal reception and transmission capabilities suitable for applications in IoT, mobile communications, and other related fields. Its magnetic suction design allows for easy and quick installation on metal surfaces, ensuring a stable and reliable connection experience for users.

With its wide frequency range and high-performance capabilities, the L-1RC4 antenna supports reliable wireless connectivity across multiple cellular networks. It enables efficient data transfer, voice communication, and IoT applications.

Key Features

- Operates in 690-960, 1710-2700
 MHz
- Multiband band antenna.
- Vertical polarization
- High gain of 5 dBi
- VSWR 1.4
- Omni-directional pattern

Applications

- 4G/LTE radios
- Gateways
- Set-Top Boxes
- Security
- Transportation
- Smart agriculture

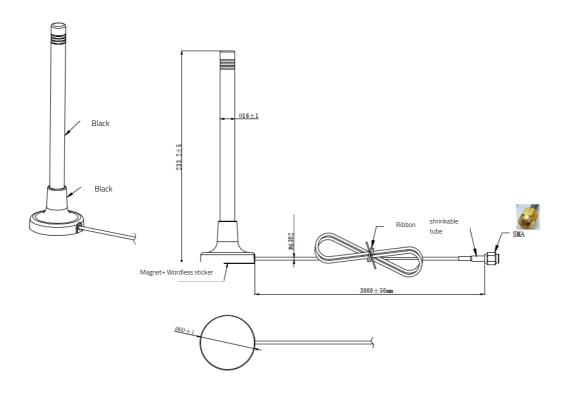
Electrical Specifications

Frequency			VSWR	Peak Gain	Efficiency
LTE	690 - 960	MHz	2.3	2.0 d Bi	53%
LTE/WiFi	1710 - 2700	MHz	1.6	6.0 d Bi	60%

Frequency Range	690-960, 1710-2700 MHz	Radiation	Omnidirectional
Impedance	50 Ω	Polarization	Linear

Mechanical Specifications

Type	Magnetic	Mounting Type	Magnetic
Dimensions	233 × 16 mm	Casing	YES
Connector	SMA Male	Color	Black
Enclosure	TPE	Material	ABS
Cable Length	3000mm		


Caution:

- 1. Do not apply excess mechanical stress to the component body or terminations. Do not attempt to re-form or bend the components, as this will cause damage to the component.
- 2. Do not expose the component to an open flame.
- 3. This specification applies to the functionality of the component as a single unit. Please ensure the component is thoroughly evaluated in the application circuit.

Product Image and Dimensions

Radiation Pattern

A radiation pattern is a graphical representation of the directional properties of an antenna. It shows how electromagnetic waves are distributed in space in relation to the direction of propagation.

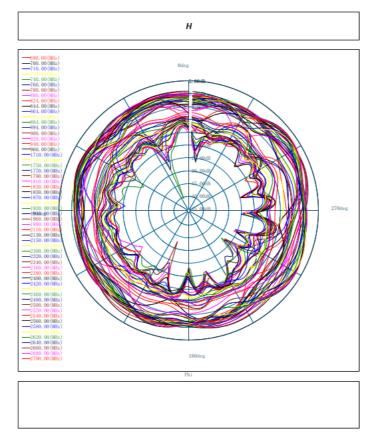
By understanding the information provided by a radiation pattern, it is possible to optimize the design and performance of an antenna for specific applications.

Test Setup

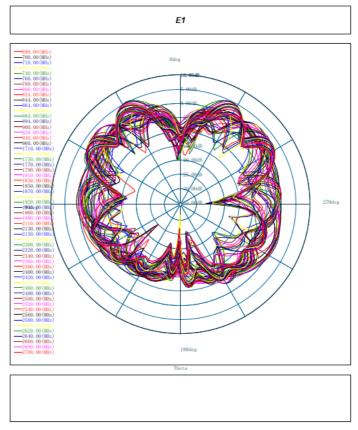
Equipment

XYZ Testing Machine

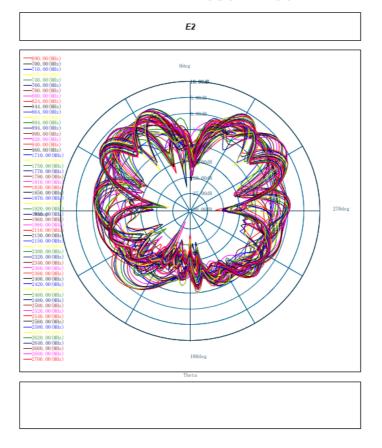
Conditions


Free space Bend

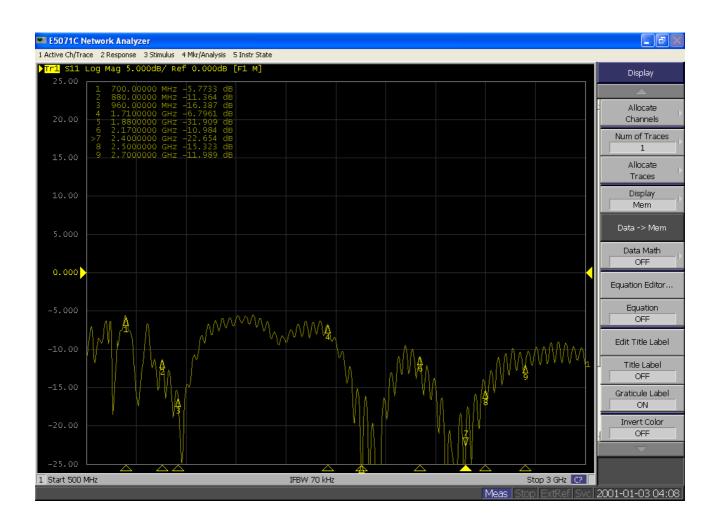
XY Plane (H)

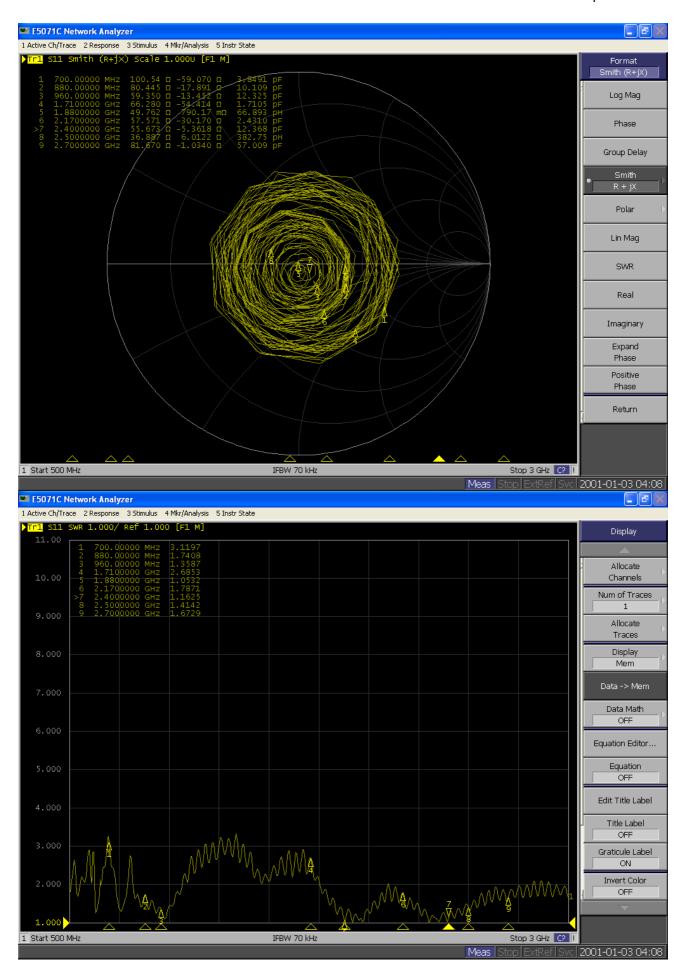

690-2700 MHz

XZ Plane (E1)


690-2700 MHz

YZ Plane (E2)

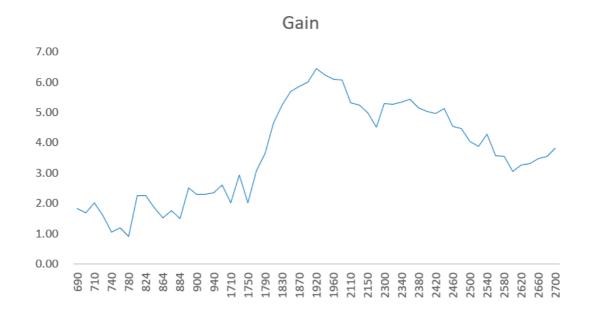

690-2700 MHz



Antenna Smith and VSWR

	VSWR	Frequency		VSWR
MHz	3.1	2170	MHz	1.7
MHz	1.7	2400	MHz	1.1
MHz	1.3	2500	MHz	1.4
MHz	2.6	2700	MHz	1.6
MHz	1.0			
	MHz MHz MHz	MHz 3.1 MHz 1.7 MHz 1.3 MHz 2.6	MHz 3.1 2170 MHz 1.7 2400 MHz 1.3 2500 MHz 2.6 2700	MHz 3.1 2170 MHz MHz 1.7 2400 MHz MHz 1.3 2500 MHz MHz 2.6 2700 MHz




Antenna Efficiency and Gain

Frequency		Efficiency	Gain		Frequency		Efficiency	Gain
690	MHz	56%	1.83748	-	1940	MHz	62%	6.247476
700	MHz	56%	1.694204	_	1960	MHz	63%	6.096007
710	MHz	57%	2.027525		1980	MHz	63%	6.062555
720	MHz	56%	1.595535		2110	MHz	49%	5.309043
740	MHz	51%	1.06179		2130	MHz	48%	5.236344
760	MHz	47%	1.199184	_	2150	MHz	49%	4.981504
780	MHz	43%	0.920479		2170	MHz	48%	4.526871
800	MHz	47%	2.260084		2300	MHz	56%	5.300898
824	MHz	45%	2.264766		2320	MHz	55%	5.272173
844	MHz	44%	1.856401		2340	MHz	56%	5.333474
864	MHz	50%	1.523333		2360	MHz	55%	5.426106
880	MHz	53%	1.758017		2380	MHz	53%	5.152271
884	MHz	51%	1.489711	_	2400	MHz	53%	5.037961
894	MHz	66%	2.513927	_	2420	MHz	51%	4.974081
900	MHz	64%	2.310338	_	2440	MHz	53%	5.137402
920	MHz	63%	2.312106	_	2460	MHz	47%	4.547228
940	MHz	66%	2.345908	_	2480	MHz	48%	4.476137
960	MHz	66%	2.618217		2500	MHz	46%	4.047912
1710	MHz	35%	2.026416		2520	MHz	43%	3.87811
1730	MHz	41%	2.938906		2540	MHz	45%	4.283659
1750	MHz	40%	2.006976	_	2560	MHz	39%	3.565613
1770	MHz	49%	3.069029	_	2580	MHz	43%	3.558596
1790	MHz	50%	3.652864		2600	MHz	40%	3.049512
1810	MHz	55%	4.653018	_	2620	MHz	42%	3.256426
1830	MHz	57%	5.247236	_	2640	MHz	41%	3.308769
1850	MHz	59%	5.69273	_	2660	MHz	42%	3.470857
1870	MHz	61%	5.865461	_	2680	MHz	42%	3.540888
1880	MHz	62%	6.010724	_	2700	MHz	45%	3.826735

1920 MHz 65% 6.442854

Environmental Data

Operating Temperature	-20°C to +80°C
Vibration	N/A
IP Rating	IP66

Ordering Information

Product Variants

Part Number	Description
L-1RC4	4G Magnetic Suction Antenna

About MIOT

Miot Wireless Solutions, headquartered in Suzhou, China, was established in 2017. It has subsidiaries in Canada, the United States, Brazil, and EMEA. MIOT is a professional designer and manufacturer of Antennas and IoT PCBA products, providing turn-key service to customers

worldwide.

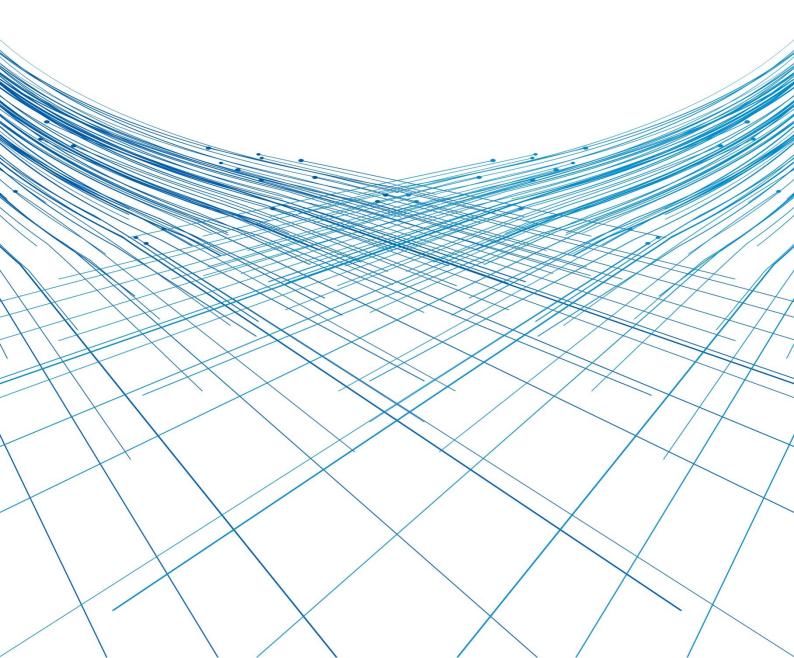
Our talented R&D team has experienced antenna, hardware, and software engineers who can participate in your new project, from something simple like antenna/selection and design, to complete turn-key services, which entails taking your concept and ideas through design, prototyping, debugging, certification, and manufacturing. Miot offers reliable products at reasonable prices with fast delivery times to help you get ahead in the market.

Contact

MIOT Wireless Solutions Co. Ltd. 120-5800 Ambler Dr, MISSISSAUGA ONTARIO L4W 4J4

Canada

Website: www.miotsolutions.com Email: info@miotsolutions.com


The information contained herein is provided "as is" and MOIT assumes no liability for using the information. No warranty, either express or implied, is given, including but not limited to the accuracy, correctness, reliability, and fitness for a particular purpose of the information. This document may be revised by MOIT at any time.

MIOT reserves all rights to this document and the information contained herein. Reproduction, use, modification, or disclosure to third parties of this document without express permission is strictly prohibited.

Copyright © 2023, MIOT Wireless Solutions Ltd. All Rights Reserved

